
A design decision documentation technique: Five viewpoints to

capture the architectural knowledge

Martijn Sturm
m.j.sturm@students.uu.nl

25 June 2020

Abstract

Software systems have become larger and more complex in recent years. Therefore, it is more costly to extend
existing software. A technique to help capture and represent a software system’s rationale and history helps
understanding and communicating this system. In this paper a technique to document architecture decisions
is described and applied on a made up case. Also, a Process-Deliverable Diagram is created to support the
use of this technique. To conclude, some findings from an interview with the creator of the technique are
presented.

Notice of Originality

I declare that this paper is my own work and that information derived from
published or unpublished work of others has been acknowledged in the text
and has been explicitly referred to in the list of references. All citations are in
the text between quotation marks (“ ”). I am fully aware that violation of these
rules can have severe consequences for my study at Utrecht University.

Name: 
Martijn Sturm

Place: 
Utrecht

Date: 
25-6-2020

Signed:
 

1



1 Introduction

In this section, the technique from Van Heesch et al.
(2012a) is described. The technique was created by
Uwe van Heesch, in collaboration with P. Avgeriou
and R. Hilliard. Uwe van Heesch worked for the Uni-
versity of Groningen when this paper was written.

This technique can integrate with the viewpoints
approach described in P. B. Kruchten (1995) and ISO
(2011). First, the components of the framework (the
viewpoints) are explained. Thereafter, the procedure
of applying the technique is described.

Semantics and notation

Decisions are containing more information than can
be represented in a single viewpoint-like model.
Therefore, Van Heesch et al. (2012a) propose that
multiple viewpoints are necessary to document ar-
chitecture decisions completely. Note that for most
viewpoints, actual views were generated in section 2.

Viewpoints. The Decision Detail viewpoint
contains all the information of every decision that has
been considered separately. This viewpoint serves as
a sort of catalog for all decisions. It includes infor-
mation about relations to other decisions, a descrip-
tion of the problem and the alternative solutions, and
historical changes if applicable (Van Heesch et al.,
2012a).

The Decision Relationship viewpoint is used
to visualize the dependencies between the individual
decisions. In this viewpoint, all decisions are depicted
as rounded rectangles in a single diagram including
the name and the decision’s state. If there is any rela-
tionship between a pair of decisions, these are visual-

ized making use of arcs including a description of the
type of relationship (Van Heesch et al., 2012a). Ex-
amples of relations are: ”caused by”, ”depends on”,
and ”alternative for”.

The Decision Stakeholder Involvement
viewpoint is the least used viewpoint and hence not
described.

In the Chronological viewpoint, the system’s
evolution is visualized. System milestones are the
nodes, from which arrows connect every decision
made after the milestone in a sequential manner. The
last decision before a new milestone connects via an
endpoint to that new milestone. Every decision con-
tains a state as well. Hence, state changes can be
tracked in time by following the arrows that connect
all the decisions (Van Heesch et al., 2012a).

In Van Heesch et al. (2012b), the authors pro-
posed an additional Decision Forces viewpoint. A
force is defined as any factor that plays a role in the
system and the system’s environment that enables
the system to function (Van Heesch et al., 2012b).
These forces influence the architect in choosing for
a particular alternative concerning an architectural
decision. This factors can be project-specific, such
as a project’s requirement, but can also be driven
by an architect’s personal experience or a recommen-
dation from literature. This viewpoint describes the
relations between the decisions and the forces that
influence the decisions that the architects make (Van
Heesch et al., 2012b).

In figure 1 the metamodel of all viewpoints is
shown. This metamodel is adapted from the meta-
models in Van Heesch et al. (2012a) and Van Heesch
et al. (2012b). It is simplified so all viewpoints could
be included in a single diagram. For the extended
metamodels, refer to the original papers (Van Heesch
et al., 2012a, 2012b).

In van Heesch et al. (2017), the authors describe
several additions for the already existing viewpoints.
For this paper, these additions introduce too much
complexity. Please refer to van Heesch et al. (2017)
for further details.

Description of procedure

In this section, a description is given about the pro-
cedure of the technique.

Development activity and deliverable. This
technique can be used to execute the documentation
development activity. Documentation is an activity
that spans most of the phases of software develop-
ment. However, this technique focuses on the deci-
sions during the design phase mostly. The deliverable
will be a combination of multiple diagrams represent-
ing the four viewpoints mentioned earlier. These di-
agrams undergo an evolution as long as the software
system is being further developed. The deliverable

will be build from scratch during the design phase of
the software development process. After implementa-
tion and deployment, the deliverable can serve multi-
ple functions depending on the future of the software
system and the point in the software lifecycle that is
reached.

Before this technique can be applied during the
development of a software system, it is necessary that
the requirements for the system have been gathered,
and that the relevant stakeholders are known. Sub-
sequently, the technique can be applied according to
the steps described below.

Determine relevant viewpoints. First of all, se-
lect which of the 5 viewpoints are necessary for the
project. This depends on the size, complexity, num-
ber of stakeholders, among other factors (Van Heesch
et al., 2012a). For most projects it is advised to al-
ways include the relationship, forces, and detail view-
points. Depending on the number of stakeholders in-
volved, a stakeholder viewpoint can be helpful. Ad-

2



Iteration

Stakeholder

Action

has 

target

belongs to

changed in

justifies

Architecture Decision

RationaleState

Force

Group

source

Relationship

concerns

performed by

Chronological

Stakeholder

Force

Relationship

Figure 1: Metamodel of the viewpoints. In which viewpoint the elements are represented is depicted with
colored dots. Note that each element is found in the detail viewpoint.

ditionally, if a software system is meant to last for a
long time and is expected to undergo a lengthy evo-
lution, the chronology viewpoint should also be used.

Decide which tool will be used. Second, a tool
should be selected that is used to perform the doc-
umentation. The technique does not include a fixed
tool to actually execute the activities and create the
deliverable. A minimal supportive tool would be a
tool to create diagrams, which are needed for the
viewpoints that use entity-relationship based nota-
tions (all but the detail viewpoint). Besides, the tool
should support drawing tables for the forces and the
detail viewpoints. A tool could enable automation of
some parts of the activities.

Gather the forces. The next step involves identi-
fying the forces. All forces should be gathered and
listed before any decision is made (Van Heesch et al.,
2012b). This, so decisions do not have to be recon-
sidered over and over. Which would be the case if
forces were added multiple times when decisions had
already been made. The resulting list of forces can
subsequently be used for every decision that has to
be made. It helps in comparing each alternative’s
impact on the forces.

Model decisions. After these previously men-
tioned preparation steps, the actual decision making
and modeling of these decisions can begin. In the
case study by Van Heesch et al. (2012a), the archi-
tects first modeled the relationship viewpoint and es-
tablished the basis of the decision detail viewpoints.
When that backbone was ready, the decision detail
viewpoints could be completed further. This was a
’brown field’ project, which also resulted in a more

effortful modeling of the chronological viewpoint. So
in this case, the order of the decisions had to be re-
trieved in some way from the architects’ memory or
from the code. In a ’green field’ project, it is more
convenient to model the decisions in the chronologi-
cal viewpoint when a single decision has been made.
When a decision is made or changed, each view has
to be updated accordingly. Then, downstream effects
on other decisions of this single change become ap-
parent, and can be acted upon. So this might lead to
a cascade of changes and further decisions that have
to be made. Note however, that consistently follow-
ing this path should lead to correctly and completely
documented decisions. This process will continue un-
til the development of the software system ends. If
the models are needed for cases such as architecture
reviews, discussions, or as information source for new
project members, the diagrams can be exported and
used.

2 Case Example

In this section, a fictional case is described upon
which the decision documentation framework will be
applied.

Case Description

An academic hospital wants to leverage the power
of information systems and combine this with ma-
chine learning to improve health care. They envision
a software system in which the generated data from
all patients and lab tests that are conducted will be
stored. This data should be accessible to authorized
personnel only. Also, it must be possible to use AI
on the data for research and prognosis / diagnosis

3



with machine learning algorithms. The system must
follow the latest and most future-proof architecture
principles. Also, it must be extensible, so that fu-
ture inventions can be implemented in the system.
Finally, security and privacy are the most important
quality attributes.

Stakeholders. Four main stakeholders are respon-
sible for the system.

• Architects: This group of people are respon-
sible for the design of the system.

• Developers: This group of people will code,
deploy, maintain and keep the system opera-
tional.

• Board of directors: These persons set the
goals of the system and evaluate its functional-
ity.

• Ethical committee: This group of people set
and test the privacy rules regarding the date
that resides in the system.

Initial Requirements. The following requirements
were established prior to the design of the system:

• R1: Data should be secure in organization

• R2: It must be possible to authorize employees
to different parts of the system

• R3: Data should be anonymized to all re-
searchers that are no docters

• R4: It must be possible to use multiple tech-
nologies and frameworks to interact with the
data

Procedure

Relevant viewpoints. First, the architects to-
gether with the board of directors decide that all
decision viewpoints will be used in the system. So
the detail, relationship, chronological, stakeholder,
and forces viewpoint will all be used. This because
the system is expected to play a major role and will
continue to evolve over many years. The viewpoint
that is least important and hence considered to be
omitted first is the stakeholder viewpoint. However,

the board of directors takes into account that the
involved stakeholders might change over the coming
years. Also they see the benefit from documenting
personal responsibilities. They think that this might
lead to more responsible choices made by all stake-
holders and thus improving the systems quality. Nev-
ertheless, we omit the stakeholder viewpoint in this
case, because it leads to unnecessary complexity.

Documentation tool. The architects decide that
as tool, they will use a modeling tool to create di-
agrams. They will use the organisation’s document
management system to collaborate on the diagrams
and other deliverables.

Gather forces. The following forces were identified.
Note that this is an arbitrary set of forces that just
function as example to showcase the decision view-
points.

• The system is only accessible from within the
hospital’s network

• Authorization of users

• Logging of user interactions with data

• Extensibility to the latest scientific frameworks

• Potential to grow the system in yet unknown
directions

Iteration 1. The architects first make a decision
about the general architecture of the system. They
decided to go for a microservices architecture, since
this alternative fulfills the requirements better than
the monolithic architecture (Table 1). Then they de-
cide that they favour Java over Python as program-
ming language to develop the system in. The trade-
off of both decisions in the forces view is shown in
Table 2. Then, other decisions that build on top of
the decisions above, are made. These are visualized
in figures 2 and 3

After all necessary functionality is implemented,
they decide to test this first iteration and call it Demo
1. Some departments in the hospital are asked to as-
sist in testing. When this is done, the first iteration
can be marked as finished. This is also shown in fig-
ure 2.

4



Table 1: Detail decision for Micorservice
Name Microservices
Current State Decided
Decision Group Architectural patterns
Problem We need to choose the best possible main architecture for the system
Decision A microservices architecture is chosen
Alternatives Monolith
Arguments A microservice architecture is better extensible, scalable and maintainable.

Related decisions
This <<depends on>>Both Python and Java
REST APIs <<depends on>>this

Related requirements
R4: Multiple technologies
R5: Extensibility

Start
January 2021

<<release>>
Demo 1

<<decided>> 
Java

<<decided>> 
Microservices

<<decided>> 
Java Spring platform

<<decided>> 
MySQL database

<<decided>> 
JDBC Library

<<decided>> 
Sleuth Logging

<<decided>> 
Java and Python

<<discarded>> 
Java

...

Figure 2: Chronology view. This is the Chronology viewpoint after 2 iterations. The yellow bricks denote
milestones. All rounded rectangles are decisions

Table 2: Forces view. Not all forces have to have an impact on each decision. If there is no impact, the
corresponding cells are left blank. Pluses represent positive impact, minuses represent negative impact

General architecture Programming language
Microservices Monolithic Python Java
<decided> <discarded> <discarded> <decided>

code Description
r1 Authorization - +
r2 User logging + ++
r4 Scientific frameworks + - ++ -
r4 Growing potential ++ - - - ++
r1 Network access

5



<<alternative for>>

<<discarded>>
Python

<<alternative for>>

<<rejected>>
Java

<<decided>>
Both Python and

Java. depends on

<<decided>>
Python for Machine

learning

Programming Languages

Architectural
patterns

<<depends on>>

<<decided>>
Microservice
architecture <<depends on>>

REST APIs

Databases

<<idea>>
Split up personal and

medical data

Figure 3: Relationship view. Every rounded rectangle represents a decision. The status is displayed above
the decision’s name. Decision groups are the boxes surround the decisions.

Iteration 2. Multiple departments have researchers
investigating machine learning algorithms to predict
disease outcomes for patients based on the patient
data. Now every machine learning project is done
separately. A platform that enables researchers to
collaborate and use data from different departments
within the hospital should allow them to do better re-
search. The data should be kept anonymized for the
researchers during development of their algorithms
however. Contrary, its patient information should be
accessible to the doctors that use the algorithm dur-
ing prediction time.

So now the architects need to decide what to use
for the machine learning platform. They decide that

Python is needed, because it is the most popular pro-
gramming language for machine learning. This con-
flicts with the decision they made earlier to only use
Java in the system. Hence, this decision has to be
changed. These changes are visible in figures 2 and
3.

Deliverable

Above, the decisions that were made during incre-
ment 1 and 2 are described. These decisions were
modeled in figures 2 and 3 and in tables 1 and 2. All
the viewpoints together form the deliverable of the
technique.

6



3 Process-Deliverable Diagram

In this section, the decision documentation frame-
work technique (Van Heesch et al., 2012a, 2012b) is
described and explicated making use of the Process-
Deliverable Diagram (PDD) notation. This results
in diagrams representing the process and the deliver-
ables (van de Weerd & Brinkkemper, 2009).

The technique is applied to documentation in soft-
ware development projects. Actors involved in ap-
plying this technique are managers, architects, and
developers. The architecture and documentation ac-
tivities are solely performed by architects and devel-
opers. For setting up of the documentation process,
managers can be involved as well. Section 3.1 de-
scribes the technique at the most coarse-grained level
of detail. In section 3.2, the process of updating the

views per viewpoint will be described.

3.1 Process level

This section describes the most coarse-grained level
of the decision documentation framework technique.
The PDD for this level is shown in Figure 4. The
activities and concepts are described in Tables 3 and
4 respectively.

This process starts when a new architecture deci-
sion needs to be made. Then, the activities described
in the subsections will be performed. The process
ends when the architecture decision is documented
satisfactorily according to the architects. The pro-
cess can be split up in the preparation, decision, up-
date documentation, and monitoring effects activities
(Table 3).

Figure 4: The PDD for the process of decision documentation

7



Table 3: Activity table for the Architecture decision documentation process
Activity Sub activity Description

Gather project forces This activity makes sure that all relevant forces that need to be
considered during making of ARCHITECTURE DECISIONs are
listed and agreed upon by several stakeholders.

Choose relevant views The views that will provide valuable knowledge during this project
need to be determined. Which views are relevant can depend on
the project’s size, the number of people involved, among other
factors.Preparation

Choose documentation tool The tool to make all diagrams, tables, and other content that
constitute the ARCHITECTURE DECISION DOCUMENT need
to be agreed upon. Working with a single tool makes sure that all
VIEWs of the ARCHITECTURE DECISION DOCUMENT can
be changed by every employee, and possibly hyperlinked.

Review relevant decision history Before being able to make an ARCHITECTURE DECISION, the
actors should be up-to-date with the software system’s current
architecture. Therefore, the actors should review the decision his-
tory that is relevant for the decision under consideration. This,
so that the consequences of the decision will be compatible with
the current software system.

Decision
Make architecture decision The actual ARCHITECTURE DECISION has to be made before

documentation can start. This is a very complex activity. Its
details are out of scope of this paper.

Update relationship view In this activity, the RELATIONSHIP VIEW is updated according
to the decision that is made / changed. The details concerning
this activity are shown in Fig. 6

Update stakeholder view In this activity, the STAKEHOLDER VIEW is updated according
to the decision that is made / changed. This view is not described
in further detail, since it is the least used view.

Update detail view In this activity, the DETAIL VIEW is updated according to the
decision that is made / changed. The details concerning this ac-
tivity are shown in Fig. 5

Update chronology view In this activity, the CHRONOLOGY VIEW is updated according
to the decision that is made / changed. The details concerning
this activity are shown in Fig. 8

Update documentation

Update forces view In this activity, the FORCES VIEW is updated according to the
decision that is made / changed. The details concerning this ac-
tivity are shown in Fig. 7

Review view consistency Parallel to the update documentation activity, the effects of the
decision on the entire software system need to be monitored. In
this sub-activity, the consistency among the views is monitored.
Inconsistencies should be addressed and fixed.

Monitoring effects
Review decision implications Also, the implications that the proposed ARCHITECTURE DE-

CISION has on the architecture have to be reviewed. This can
become apparent while the decision is modeled in the VIEWs.

8



Table 4: Concept table for the Architecture decision documentation process
Concept Description
FORCE A FORCE affects the ARCHITECTURE DECISION that is made by architects. The

FORCEs are collected in a FORCES LIST. (Van Heesch et al., 2012b)
FORCES LIST All forces that are known to influence the type of software system at hand should be collected

and listed in this FORCES LIST. (Van Heesch et al., 2012b)
DOCUMENTATION TOOL A DOCUMENTATION TOOL will be used by all developers and architects to document

the decisions in the VIEWs.
ARCHITECTURE DECISION DOCUMENT This document contains all selected VIEWs that are created and updated during the software

development process. This can be for example a repository containing files representing the
VIEWs.

ARCHITECTURE DECISION A software system’s architecture is determined by all ARCHITECTURE DECISIONs that
ware taken to create the system.(P. Kruchten, 2004)

VIEW A VIEW captures certain aspects of an ARCHITECTURE DECISION from a VIEW spe-
cific perspective. Multiple VIEWs together make up the ARCHITECTURE DECISION
DOCUMENT. (P. B. Kruchten, 1995)

RELATIONSHIP VIEW Is used to document relationships between ARCHITECTURE DECISIONs. (Van Heesch
et al., 2012a)

DETAIL VIEW Describes the rationale on which an ARCHITECTURE DECISION is based. Also includes
other decision specific information.(Van Heesch et al., 2012a)

FORCES VIEW Describes the relations between stakeholder concerns, forces, and ARCHITECTURE DE-
CISIONs. (Van Heesch et al., 2012a)

CHRONOLOGY VIEW Describes decisions and their order from a chronological perspective. (Van Heesch et al.,
2012a)

STAKEHOLDER VIEW Describes the interactions between stakeholders and ARCHITECTURE DECISIONs. (Van
Heesch et al., 2012a)

3.2 View level

In this section, the PDDs for the four views are dis-
played in more detail. The detail view is shown in
figure 5 and tables 5 and 6. The relationship view
is shown in figure 6 and tables 7 and 8. The forces
view is shown in figure 7 and tables 9 and 10. The
chronology view is shown in figure 8 and tables 11
and 12. The views are split up in separate views to
improve readability. Nonetheless, there is some over-
lap of information between the individual PDDs. For
example, in some view PDDs, the technique requires
the decision’s state to be included in the diagrams.
This needs to be consistent between each individual

view. Activities that require this type of consistencies
are marked with a numbered superscript.

Another thing to note is that the concept DE-
CISION on this level is not exactly the same as the
concept ARCHITECTURE DECISION on the top
level. Here, a DECISION represents the subset of
information from an ARCHITECTURE DECISION
that is documented in the particular view. Contrary,
the ARCHITECTURE DECISION consists of all the
information and influences that are experienced by
architects (P. Kruchten, 2004). In other words, the
DECISION is an view-specific abstraction of the AR-
CHITECTURE DECISION.

Figure 5: The PDD for updating the Detail View

9



Table 5: Activity table for the Detail view
Activity Sub activity Description

Make new instance If the current DECISION is a new one, a new instance of DECISION in the
DETAIL VIEW needs to be created.

Set decision state Set the DECISION’s state in the document.
Document relations Document to which other DECISIONs this DECISION has relationships. Make

sure this is consistent with the other VIEWs.
Updates detail view

Document other fields Set all other fields of this DECISION instance. These are shown as the DECI-
SION concept’s attributes.

Table 6: Concept table for the Detail view
Concept Description
DETAIL VIEW A VIEW that contains details for every DECISION. It can be a hyperlinked document for example.

(Van Heesch et al., 2012a)
DECISION Contains all details of a single DECISION. Can be structured as a list, or a table. It contains the

following properties: The Name should resemble the decision that is taken. The Decision Group can be
read from the RELATIONSHIP VIEW. The Problem describes the context and need for the DECISION.
The Alternatives describes the option to solve the Problem. The Arguments contain the rationale for each
Alternative. Related decisions can be copied from the RELATIONSHIP VIEW. Related requirements
need to be documented. History contains all the changes of the DECISION’s State. (Van Heesch et al.,
2012a)

Figure 6: The PDD for updating the Relationship View

Table 7: Activity table for the Relationship view
Activity Sub activity Description

Add decision A DECISION is added to this view by creating a new box containing the
DECISION’s name.

Set decision state The DECISION’s state is added to the box.
Draw relations RELATIONSHIPs between the new DECISION and existing DECISIONs are

drawn making use of arcs that contain a description of the RELATIONSHIP’s
type and the direction of that type.

Update relationship view

Change groups The GROUPs should be altered if the added DECISION has resulted in a need
for change. For example, a new category could become apparent as result of
the new DECISION.

10



Table 8: Concept table for the Relationship view
Concept Description
RELATIONSHIP VIEW A VIEW that documents the RELATIONSHIPs between DECISIONs. A diagram can be used to model

these interaction, which are stored in the RELATIONSHIP VIEW. (Van Heesch et al., 2012a)
RELATIONSHIP Connects a DECISION to an other DECISION. This has a type, and a direction indicating the effect the

DECISIONs have on each other. (Van Heesch et al., 2012a)
DECISION A representation of an ARCHITECTURAL DECISION simplified for the RELATIONSHIP VIEW. It is

depicted as a box in the diagram, contain the DECISION’s name and state. (Van Heesch et al., 2012a)
GROUP A category that contains DECISIONs. This is visualized by colouring or big boxes including (multiple)

DECISION boxes in the diagram. (Van Heesch et al., 2012a)

Figure 7: The PDD for updating the Forces View

Table 9: Activity table for the Forces view
Activity Sub activity Description

List forces If the FORCEs have changed since the last time the FORCES VIEW was
updated, then the FORCEs depicted as rows in the table should be updated.

Add decision Add the DECISION as a new double column to the table.
Set alternatives Add the ALTERNATIVEs and their states as single columns under the DECI-

SION column.
Set states Add the STATE of each ALTERNATIVE to the column name.

Updates forces view

Set effects For every cell in the table, put the corresponding EFFECT that the ALTER-
NATIVE has on the corresponding FORCE.

Table 10: Concept table for the Forces view
Concept Description
FORCES VIEW A VIEW that documents the DECISION’s ALTERNATIVEs and the impact on the project’s FORCEs.

It is depicted as a table with in the rows the FORCEs, and in the columns the DECISIONs and their
ALTERNATIVEs. (Van Heesch et al., 2012b)

FORCE A part of the problem that should be solved by a DECISION. (Van Heesch et al., 2012b)
DECISION A representation of an ARCHITECTURAL DECISION simplified for the FORCES VIEW. It is depicted

in a row, in which the ALTERNATIVEs coresponding to this DECISION are merged.
ALTERNATIVE One of the proposed solutions concerning a DECISION. It is depicted in the columns, resulting in one

column per ALTERNATIVE.(Van Heesch et al., 2012b)
EFFECT This depict the impact of a single ALTERNATIVE on a single FORCE. It is placed in the cell on the

axis of the coresponding column and row. In the table, the EFFECT’s symbol is used, which is explained
somewhere in the FORCES VIEW as a legend for example. (Van Heesch et al., 2012b)

11



Figure 8: The PDD for the Chronology View

Table 11: Activity table for the Chronology view
Activity Sub activity Description

Create decision Create a new DECISION which is modeled as a box.
Set decision state Add the DECISION’s state to the DECISION ENTITY.
Add endpoint If this current DECISION is the last one belonging to a particular version of

the software system, add an ENDPOINT to which all the latest DECISIONs
connect.

Add milestone Add a new MILESTONE, which marks the start of a new version.
Updates chronology view

Draw arcs Connect all ENTITYs to each other making use of directed ARCS.

Table 12: Concept table for the Chronology view
Concept Description
CHRONOLOGY VIEW A VIEW that contains the history of DECISIONs for a project. it is depicted as a diagram consisting of

ENTITYs visualized as boxes, which are connected by ARCs. An ENTITY earlier in time is the source
of another ENTITY. (Van Heesch et al., 2012a)

ENTITY An event or bundle of information modeled as a box in the CHRONOLOGY VIEW.
ARC A connection between two ENTITYs. It contains a direction, point towards the most recent ENTITY.

This concept represents the chronology dimension of the CHRONOLOGY VIEW
ENDPOINT A type of ENTITY. All ARCs originating from the last ENTITYs of a particular version of the software

project connect to this. (Van Heesch et al., 2012a)
MILESTONE A type of ENTITY. All ARCs to ENTITYs in a new version of the software project originate from this.

(Van Heesch et al., 2012a)
DECISION A type of ENTITY. Contains all details of a single DECISION. Can be structured as a list, or a table.

12



4 Related Literature

Software architecture. Software architecting is
the activity that connects the requirements of a soft-
ware system, with the actual implementation of the
system. This is achieved by three main steps of archi-
tecting. First the requirements are analyzed. Second,
solutions are proposed to fulfill the requirements. Fi-
nally, evaluation takes place to check whether the
chosen solutions fulfill the requirements (Hofmeister
et al., 2007). When the evaluation result is consid-
ered positive, the architecture can be implemented,
resulting in a solution. Thereby, software architec-
ture has bridged the gap between the problem-space
(requirements) and the solution space (the software
system).

Software architecture is a complex topic. To sup-
port architects, different guidelines were proposed
(ISO, 2011; P. B. Kruchten, 1995; Perry & Wolf,
1992). These help in maintaining consistency, and
suggest several perspectives to use to model a soft-
ware system.

Software development suffers from architec-
tural erosion. Architectural erosion or design ero-
sion (hereafter called erosion) is a phenomenon ap-
pearing during software systems development (Van
Gurp & Bosch, 2002). Erosion leads to a decrease of
maintainability of the system in the long run. Typ-
ically, erosion is caused by a couple of factors. One
is the lack of traceability of architectural decisions1.
Also, the iterative nature of software development
methods and their emphasis on increments over doc-
umentation contributes. Additionally, the increase of
a system’s complexity increases erosion (Van Gurp &
Bosch, 2002).

Erosion can lead to a system being redeveloped
from scratch. This, in turn, can lead to very high
costs in resources and time being invested (Van Gurp
& Bosch, 2002). Although it is possible to counter
erosion via certain strategies, a more fundamental ap-
proach would be to fix the cause of erosion (Van Gurp
& Bosch, 2002). We build towards this purpose in the
upcoming sections.

Architectural Knowledge. De Boer et al. (2007)
describe the term Architectural Knowledge (AK) as
the knowledge about an architecture. This AK re-
sides for a large part in the minds of involved ar-
chitects. Therefore, it can be hard to preserve and
communicate it. De Boer et al. (2007) propose an
AK model, which consists of all elements that they
consider to be part of a system’s architecture. The
modelled AK has several strategic purposes for an
organization. It can be used to share information be-
tween stakeholders, help in keeping the system com-
pliant with set architectural rules, help auditors to
discover the system’s architecture, and improve the

traceability of AK (De Boer et al., 2007). Design de-
cisions are one element in the AK model, and can be
used to enforce, reflect, and inform stakeholders (De
Boer et al., 2007).

Design decisions help preserve relevant infor-
mation. The AK concept described above could po-
tentially solve the problem of the erosion caused by a
lack of traceability of design decisions. A technique
that enables documentation of these design decisions,
and hence improves their traceability, has the po-
tential to decrease a system’s erosion over time. P.
Kruchten et al. (2009) and Bosch (2004) both call
for more focus on design decisions in software archi-
tecture. Bosch (2004) proposes that design decisions
should be ’first class citizens’. This is in contrast
with previous documentation practices, in which the
structures instead of the rationales of a system are
represented (ISO, 2011; P. B. Kruchten, 1995). Doc-
umenting decisions can have multiple benefits. It has
the potential to show changes over time, show ratio-
nales and options that were considered, and improve
traceability of constraints on the system. Also, it can
combine well with agile development methods. Be-
cause development can start when a decision is taken
if the implications and constrains described in the
decision are adhered to during development (Bosch,
2004).

Defining design decisions. Design decisions are
defined as follows: They should dictate the structure
of the architecture. They may define rules and con-
straints for development and the architecture’s com-
ponents. Also, they should include a rationale for
the decision (Bosch, 2004). Additionally, P. Kruchten
(2004) defined some properties that design decisions
should have, which are the following. The decision’s
scope should be constrained by defining topics to
which the decisions belong. Additionally, the deci-
sions should have a state, and decisions should have
relations to decisions and the architecture’s other ar-
tifacts (P. Kruchten, 2004).

Decision modeling techniques

In the above sections, software architecture is de-
scribed as the link between the problem space (i.e.
requirements) and the solution space (i.e. software).
These three concepts can be continuously evolving
over time and often grow in complexity. Also, design
decisions contain all the information about why cer-
tain structures were implemented in the architecture
over alternative structures. Hence, to capture and
preserve all this information, a technique is needed
that models the architecture decisions. Preferably,
this technique integrates with already existing ar-
chitecture documenting techniques such as the view-
points approach (ISO, 2011; P. B. Kruchten, 1995).

1’Architectural decision’ and ’design decision’ are interchangeably used hereafter. They refer to the same concept.

13



Several papers have proposed ways to document de-
sign decisions. Below are some examples described.

Decision templates. The paper of De Boer et al.
(2007) stated that making decisions is ranking alter-
native solutions to a problem. They also applied
techniques from Tyree and Akerman (2005) and P.
Kruchten (2004) to validate their conceptual model
(De Boer et al., 2007).

Tyree and Akerman (2005) propose a template
for architectural decisions. For each decision multiple
fields are documented: Administrative fields such as
the issue, decision status and the group the decision
belongs to. Input factors that influence the decision
made, and consequences that the decision has on the
system. Also relations between components of the
architecture and notes about the process of the deci-
sion are registered (Tyree & Akerman, 2005). When
a decision has been made, the consequences need to
be analyzed. Subsequently the architects should de-
termine if the consequences should be converted into
decisions as well (Tyree & Akerman, 2005).

P. Kruchten (2004) defines an ontology for archi-
tecture decisions rather than providing a technique
to document them.

Tools. Tang et al. (2010) use a framework to com-
pare tools that can support AK management. Func-
tionality that the evaluated tools provide include
traceability, relationship modeling, visualisation, and
management.

Extend decision templates. The main paper that
this article is about (Van Heesch et al., 2012a) has
a component (decision detail viewpoint) that is in-
spired by the decision template from Tyree and Ak-
erman (2005). Consequently, a decision template can
be seen as part of an architecture documentation
framework. But a decision template on its own does
not provide easy visualization of decision’s dependen-
cies and relationships (Van Heesch et al., 2012a). Es-
pecially for larger projects, it can be expected that
decision-template-only approaches will perform less
in communicating an architecture’s structures and ra-
tionales to stakeholders that are unfamiliar with the
system. A conclusion from a case study was that
decision templates were considered less effective and
beneficial by students than the decision forces view-
point (Van Heesch et al., 2012b).

Annotations. Another option to document design
decisions are annotations. Annotations are very
lightweight, easy to implement, but therefore lack
a certain robustness in documentation capabilities.
They can be used to create the decision information
according to the viewpoints. Though, they would
benefit from some additional formalization and logic
besides the annotation to enforce consistency and
allow for (automated) analysis (Van Heesch et al.,

2012a). For an example of an annotation technique,
refer to Liang et al. (2009)

5 Findings

In this section, some additional findings and future
perspectives are presented. These were based on an
interview with Uwe van Heesch, creator of the tech-
nique. The findings that are presented here are the
writer’s interpretations of this interview. Therefore,
the writer carries the full accountability. Note that
most findings are based on experience and opinions,
these are not backed by research data.

The subjects addressed here are related to the
use of decision documentation in practice in indus-
try. First, the significance of the technique and fac-
tors that influence its usage are described. This is
followed by how it can be used. Finally, some future
developments related to documentations in software
architecture are discussed.

Significance of technique

Industry recognizes need for decision docu-
mentation. Nowadays, many huge software systems
exist. These might be the result of years of develop-
ment, and hence years of stacking decisions on top of
each other. Parties in industry recognize the lack of
transparency of historical decisions that were made.
This results in some practical problems. First, it is
not known why decisions were made, so people are re-
luctant to change them. Nevertheless, the decisions
are revoked and changed. Which in turn can lead to
reappearance of problems that were tackled by the
decision that was revoked. Both cases can lead to a
decrease in product quality. So in short, not docu-
menting decisions can lead to difficulties in mainte-
nance and development.

Release cycles of software systems have become
much shorter in recent years. This also contributes
to the need of a lightweight method for decision doc-
umentation.

Minimize and focus the effort. So the need
for decision documentation is recognized. How-
ever, this does not mean that everything that passes
your mind should be documented. Documentation
is seen by most people as a burden, and hence, is
skipped frequently. A factor that could contribute is
that documenting is often performed after the to-be-
documented activity is completed. Therefore, focus
should be on documenting information that is useful,
keep the information as narrow as possible, and do it
during the activity.

Usefulness of decision documentation depends
on project factors. The usefulness and applicabil-
ity of a decision documentation technique for a par-

14



ticular software system project depends on some fac-
tors.

The first factor is the size of the software system
to be designed. When systems increase in size, the
number of decisions to get to that size logically in-
creases. Thereby, more decisions build on historical
decisions, resulting in an increased complexity. The
complexity can increase to an extent that it is hard
to oversee all the implications based only on memory
of architects.

Another factor is the expected durability of the
software system. IT frameworks come and go.
Frameworks that are rising in usage right now could
be superseded by others in the future. When a soft-
ware system is expected to have a long life, it will be
there to experience the rise and fall of many technolo-
gies and frameworks. To be more flexible in applying
the latest technological developments, it is necessary
to know why for particular decisions certain frame-
works were chosen. If so, decisions can be replaced
in a more informed way. Concluding, decision doc-
umentation is more important for software systems
with longer lifespans.

Implementation in Practice

This section describes the place of the framework in
the process of architecting a software system. Some
practical measures are discussed. Additionally, the
usefulness of certain parts of the framework are de-
scribed.

Make decision documentation part of the de-
velopment process. If decision documentation is
identified as useful for a project, it should be per-
formed consistently. Therefore, it should be included
as an activity in the main development process used
by the organization. Architects may be responsible to
provide foundations and resources to realize decision
documentation.

The decision documentation framework is a
solid basis. There are a few organizations that use
the decision framework. However, it is more likely
that implemented decision documentation uses a vari-
ation of the technique. This is a good way to use the
framework. You could see it as a toolbox from which
certain aspects can be selected and implemented. It
is not meant as a rigid structure. Organizations can
adapt it so it fits their goals and projects better.

Use the relationship view for a quick overview.
The relationship view is evaluated as a perspective
that helps in obtaining an overview of decisions. For
example, a new project team member is trying to get
a grasp of the foundations of the product that is being
build. A way to inform yourself about the technology
stack being used would be reading the documenta-
tion. An easier way would be looking at a relationship
view diagram, where these technologies are grouped

together. Besides, you can also explore which further
implications these decisions have on other decisions.

Forces view can be used while making and
evaluating decisions. The forces viewpoint is used
in industry during the architecture synthesis and
evaluation. First, the forces that are expected to in-
fluence the decision are selected. Based on this, al-
ternatives are weighted and the best one is selected.
This is followed by an evaluation of the proposed al-
ternative, which involves checking whether the other
forces are compliant with the proposed alternative. If
this is the case, the decision is concluded. If not so,
the alternative weighting can be repeated with the
previously violated forces included this time.

Future directions

Since the publication of the first paper about the de-
cision documentation framework (Van Heesch et al.,
2012a), some years have passed. With this, also the
technologies and methods in software development
have evolved. Here, some new developments concern-
ing documentation are addressed.

Documentation is partly automated. Continu-
ous software development aims at using specification
in files for evoking deployment of systems for exam-
ple. This is achieved by making use of provisioning
tools. With these specifications, documentation can
easily be generated automatically. There is a caveat
here however. The factual information is included in
the specification, but the rationale is not. So only the
structure and the decision alternative is captured. So
to be complete, there is still a need to do manual doc-
umentation. Otherwise, rationale, and alternatives
will not be traceable.

In the future, there might be a solution for this,
however. Data science techniques could potentially
deduce information about rationales from architec-
ture data. For example, if many software systems
use a combination of framework A with framework
B, the deduction could be that these frameworks are
a good combination. Though there is a lot to investi-
gate further. So we can not give precise estimations
about how valuable this information would be for this
application.

6 Conclusion

In this paper, the technique from Van Heesch et al.
(2012a) was demonstrated making use of a made
up case. Also, a PDD was created, to support for
this documentation activity in software development.
As future research directions, it would be interesting
to investigate what a tool supporting this technique
should look like to be an effective tool. Also, research
into data mining techniques for architecture decision
documentation could lead to a reduced effort in doc-
umentation practices.

15



References

Bosch, J. (2004). Software architecture: The next step, In European workshop on software architecture.
Springer.

De Boer, R. C., Farenhorst, R., Lago, P., Van Vliet, H., Clerc, V., & Jansen, A. (2007). Architectural
knowledge: Getting to the core, In International conference on the quality of software architectures.
Springer.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P. (2007). A general model
of software architecture design derived from five industrial approaches. Journal of Systems and
Software, 80 (1), 106–126.

ISO. (2011). Iec/ieee systems and software engineering: Architecture description. ISO/IEC/IEEE 42010:
2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std 1471-2000).

Kruchten, P. (2004). An ontology of architectural design decisions in software intensive systems, In 2nd
groningen workshop on software variability. Citeseer.

Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software, 12 (6), 42–50.
Kruchten, P., Capilla, R., & Dueñas, J. C. (2009). The decision view’s role in software architecture practice.

IEEE software, 26 (2), 36–42.
Liang, P., Jansen, A., & Avgeriou, P. (2009). Knowledge architect: A tool suite for managing software archi-

tecture knowledge. University of Groningen, Johann Bernoulli Institute for Mathematics; Computer
Science.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM SIGSOFT
Software engineering notes, 17 (4), 40–52.

Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Babar, M. A. (2010). A comparative study of architecture
knowledge management tools. Journal of Systems and Software, 83 (3), 352–370.

Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying architecture. IEEE software, 22 (2),
19–27.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational analysis and design methods,
In Handbook of research on modern systems analysis and design technologies and applications. IGI
Global.

Van Gurp, J., & Bosch, J. (2002). Design erosion: Problems and causes. Journal of systems and software,
61 (2), 105–119.

Van Heesch, U., Avgeriou, P., & Hilliard, R. (2012a). A documentation framework for architecture decisions.
Journal of Systems and Software, 85 (4), 795–820.

Van Heesch, U., Avgeriou, P., & Hilliard, R. (2012b). Forces on architecture decisions-a viewpoint, In 2012
joint working ieee/ifip conference on software architecture and european conference on software ar-
chitecture. IEEE.

van Heesch, U., Jansen, A., Pei-Breivold, H., Avgeriou, P., & Manteuffel, C. (2017). Platform design space
exploration using architecture decision viewpoints–a longitudinal study. Journal of Systems and
Software, 124, 56–81.

16


